An introduction to Coxeter groups and the properties of their weak order

Kimia Shaban Supervisor: Oliver Pechenik

University of Waterloo Department of Combinatorics and Optimization

URA Seminar August 4th/2022

Introduction

- **2** Coxeter Group Types
- 3 Posets
- **4** Sperner Property
- 6 Acknowledgements

Introduction •0000000		

Introduction

- Ocxeter Group Types
- e Posets
- Ø Sperner Property
- 6 Acknowledgements

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

• A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

- A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S
- 3 properties:

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

- A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S
- 3 properties:
 - Associativity: $\forall a, b, c \in S, a * (b * c) = (a * b) * c$

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

- A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S
- 3 properties:
 - Associativity: $\forall a, b, c \in S, a * (b * c) = (a * b) * c$
 - Identity Element: $\exists e \in S, \forall a \in S, a * e = e * a = a$

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

- A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S
- 3 properties:
 - Associativity: $\forall a, b, c \in S, a * (b * c) = (a * b) * c$
 - Identity Element: $\exists e \in S, \forall a \in S, a * e = e * a = a$
 - Inverse Element: $\forall a \in S, \exists a^{-1}, a * a^{-1} = a^{-1} * a = e$

Introduction 0000000			Acknowledgements 000
Introductio	on to Groups		

- A group is a set S, and an operation *, such that * is well defined, and * is a binary operation under S
- 3 properties:
 - Associativity: $\forall a, b, c \in S, a * (b * c) = (a * b) * c$
 - Identity Element: $\exists e \in S, \forall a \in S, a * e = e * a = a$
 - Inverse Element: $\forall a \in S, \exists a^{-1}, a * a^{-1} = a^{-1} * a = e$

Example: $(\mathbb{Z}, +)$ Identity Element: 0 Inverse Element: $\forall a \in \mathbb{Z}, a^{-1} = -a$

Introduction	Coxeter Group Types	Posets	Sperner Property	Acknowledgements
0000000		0000000	00000000	000
Generators				

• A free group is a group G generated by a set S, such that G can be built from words of the set S, where our operation * is concatenation

Introduction 0000000		Acknowledgements 000
Generators		

- A free group is a group G generated by a set S, such that G can be built from words of the set S, where our operation * is concatenation
- For example if $S = \{x, y\}$, then $G = \{w(x, y, x^{-1}, y^{-1})\}$

Introduction 0000000			Acknowledgements 000
Coxeter G	roups		

• A Coxeter group can best be described by an image

Introduction 00000000			Acknowledgements 000
Coxeter G	roups		

• A Coxeter group can best be described by an image



Introduction 00000000			
Coxeter G	roups		

• A Coxeter group is a group that is generated by reflections ...

Introduction 00000000			
Coxeter G	roups		

- A Coxeter group is a group that is generated by reflections ...
- We can instead think of Coxeter groups by considering Coxeter matrices

Introduction 00000000			Acknowledgements 000
Coxeter G	roups		

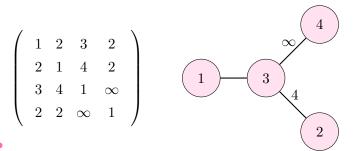
- A Coxeter group is a group that is generated by reflections ...
- We can instead think of Coxeter groups by considering Coxeter matrices

We consider a set *S*. A Coxeter matrix *M* with elements from $\{1, 2, ..., \infty\}$ satisfies the properties $M_{s,s'} = M_{s',s}$, and $M_{s,s'} = 1 \iff s = s'$

Introduction 00000●00			
Coxeter M	atrices Examples		

• These extend to Coxeter Graphs where if $M_{i,j} = 2$, there exists no edge between *i* and *j*, and anything greater than 3 indicates an edge with a weight

• These extend to Coxeter Graphs where if $M_{i,j} = 2$, there exists no edge between *i* and *j*, and anything greater than 3 indicates an edge with a weight



Introduction	Coxeter Group Types	Posets	Sperner Property	Acknowledgements
00000000	000000000	0000000	0000000	000
Understand	ling Coxeter Group	S		

- A Coxeter matrix determines a group G with S as a set of generators, where (ss')^M_{s,s'} = e
- This means that we impose the relation $s^2 = e$

Example:

$$x * y * y2 * x3 * y3 * y * y2$$
(1)

$$= x * y * x * x^{2} * y * y^{2} * y$$
 (2)

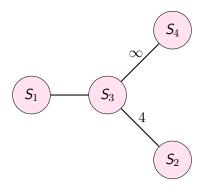
$$= x * y * x * y * y \tag{3}$$

$$= x * y * x * y^2 \tag{4}$$

$$= x * y * x \tag{5}$$

Introduction 0000000			
Coxeter Ex	ample		

- G is the Coxeter group and S is the set of Coxeter generators
- We can think our last last example of a graph of 4 generators, S_1, S_2, S_3 and S_4 , which all have the property $S_i^2 = e$



Coxeter Group Types		Acknowledgements
00000000		

Introduction

- **2** Coxeter Group Types
- 8 Posets
- Ø Sperner Property
- 6 Acknowledgements

	Coxeter Group Types 0●00000000		
Coxeter G	roup Types		

• Coxeter groups have different "types", many of which are finite

An introduction to Coxeter groups and the properties of their weak order

	Coxeter Group Types 0●00000000		
Coxeter G	roup Types		

- Coxeter groups have different "types", many of which are finite
- We first consider Type A Coxeter groups

	Coxeter Group Types o●oooooooo		
Coxeter G	roup Types		

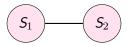
- Coxeter groups have different "types", many of which are finite
- We first consider Type A Coxeter groups
- Type A Coxeter groups are represented by Dynkin diagrams that are straight lines

	Coxeter Group Types o●oooooooo		
Coxeter G	roup Types		

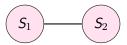
- Coxeter groups have different "types", many of which are finite
- We first consider Type A Coxeter groups
- Type A Coxeter groups are represented by Dynkin diagrams that are straight lines
- A_2 has the Coxeter matrix $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$

	Coxeter Group Types 0●00000000		
Coxeter G	roup Types		

- Coxeter groups have different "types", many of which are finite
- We first consider Type A Coxeter groups
- Type A Coxeter groups are represented by Dynkin diagrams that are straight lines
- A_2 has the Coxeter matrix $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$



	Coxeter Group Types		
Generators			



- We consider the transpositions $S_1 = (1 \ 2)$ and $S_2 = (2 \ 3)$
- We begin with 123

	Coxeter Group Types 000●000000		
Generating	S_2		

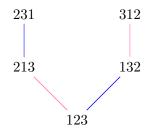
123

An introduction to Coxeter groups and the properties of their weak order

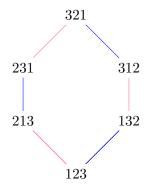
	Coxeter Group Types		
Generating	A_2		

	Coxeter Group Types		
Generating	A_2		

	Coxeter Group Types 000000●000		
Generating	$s A_2$		



	Coxeter Group Types 0000000000		
Generating	$g A_2$		

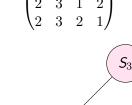


	Coxeter Group Types		
Type B an	d D Coxeter Group)S	

- We also have type B Coxeter groups
- For example, *B*₃ has the Coxeter matrix

$$\begin{pmatrix} 1 & 4 & 2 \\ 4 & 1 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$S_1$$
 4 S_2 S_3



 S_2

 S_4

 S_1

	Posets ●000000	

Introduction

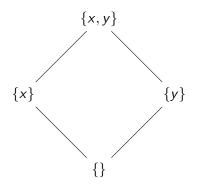
Occepter Group Types

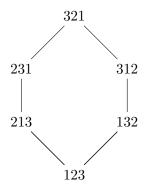
B Posets

- Ø Sperner Property
- 6 Acknowledgements

		Posets 0●00000	
Introductio	n to Posets		

- Posets stand for Partially Ordered Sets
- Posets have a set P with a partial order relation \leq
- Posets are transitive, reflexive and antisymmetric





Here we have a poset, where we can compare our elements using a length function $\ell(w)$, where we consider the shortest number of transpositions from 123 to obtain our new word Ex: $\ell(231) = 2$

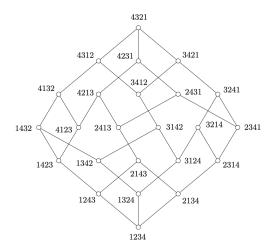
		Posets 000●000	Acknowledgements 000
Weak Order	of Coxeter Grou	ps	

Definition

The right weak order of a Coxeter group (G, S) states for $u, w \in G$, if $w = us_1s_2...s_k$, for some $s_i \in S$ such that $\ell(us_1s_2...s_k) = \ell(u) + i, \ 0 \le i \le k$, then $u \le w$

		Posets 0000●00	
Example of	f Weak Order		

Here we can see the weak order of the Coxeter group A_3

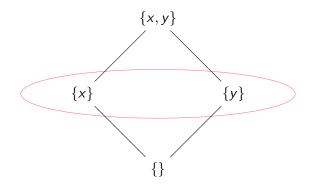


		Posets 00000●0	
Poset Antic	chains		

• An antichain is a subset of nodes in our poset such that all of the nodes are incomparable to each other

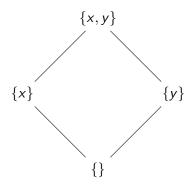
		Posets 00000●0	
Poset Antio	chains		

• An antichain is a subset of nodes in our poset such that all of the nodes are incomparable to each other



		Posets 000000●	
Rank of a I	Poset		

- A chain is a set of nodes such that all the nodes are comparable
- A ranked poset has maximal chains of equal length. A maximal chain is a chain such that no superset is also a chain



	Sperner Property ●0000000	

Introduction

Occepter Group Types

Posets

- **4** Sperner Property
- 6 Acknowledgements

	Sperner Property 0●000000	

• The Sperner property describes posets where the size of the largest antichain is less than or equal to the largest rank

	Coxeter Group Types		Sperner Property 00●00000	
Туре А С	Coxeter Groups and t	he Sperner	Property	

Theorem (Gaetz and Gao)

The weak order of type A Coxeter groups are strongly Sperner

An introduction to Coxeter groups and the properties of their weak order

		Sperner Property 000●0000	
Insert C	onjecture		

A COMBINATORIAL \mathfrak{sl}_2 -ACTION AND THE SPERNER PROPERTY FOR THE WEAK ORDER

CHRISTIAN GAETZ AND YIBO GAO

ABSTRACT. We construct a simple combinatorially-defined representation of \mathfrak{sl}_2 which respects the order structure of the weak order on the symmetric group. This is used to prove that the weak order has the strong Sperner property, and is therefore a Peck poset, solving a problem raised by Björner (1984); a positive answer to this question had been conjectured by Stanley (2017).

		Sperner Property 0000●000	
Conjecture	e 3.1		

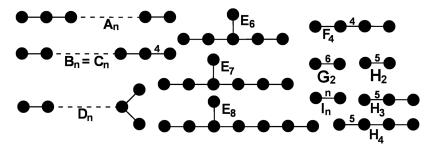
Conjecture 3.1. The weak order on any finite Coxeter group strongly Sperner.

An easy argument proves the Conjecture for the dihedral groups, and computer checks have also verified it for all Coxeter groups of rank at most four.

While this is recognized as an open problem, this paper conjectures that all finite Coxeter groups are strongly Sperner. I've been given the project of disproving this conjecture ...

		Sperner Property 00000●00	
Why Do W	/e Care?		

- There are a lot of more complicated finite Coxeter groups, many of which are very difficult to study as they get significantly more complicated
- Discovering more properties helps us learn more about the complicated cases




```
Algorithm 1: The deep cross-entropy method
 Initialize a neural network:
 while the best construction found is not a counterexample do
     for i \leftarrow 1 to N do
        w \leftarrow \text{empty string};
         while not terminal do
            Input w into the neural net to get a probability distribution F on the next letter;
            Sample next letter x according to F:
            w \leftarrow w + x:
         end
     end
     Evaluate the score of each construction:
     Sort the constructions according to their score:
     Throw away all but the top u percentage of the constructions:
     for all remaining constructions do
        for all (observation, issued action) pairs in the construction do
            Adjust the weights of the neural net slightly to minimize the cross-entropy loss
             between issued action and the corresponding predicted action probability:
         end
     end
     Keep the top x percentage of constructions for the next iteration, throw away the rest:
 end
```

		Sperner Property 0000000●	
Using Sage			

• Using SageMath, we have found that D_5 and E_6 are Sperner, but will keep using similar techniques for E_7 , E_8 and unions of antichains

sage: WeylGroup(["D", 4]).weak_poset().width()
30
sage: WeylGroup(['B', 4]).weak_poset().width()
46
sage: WeylGroup(['B', 5]).weak_poset().width()
340
sage: WeylGroup(['D', 5]).weak_poset().width()
212
sage: Hello URA Seminar!

		Acknowledgements ●00

Introduction

- Occepter Group Types
- Posets
- O Sperner Property
- 6 Acknowledgements

		Acknowledgements ○●○

References:

Björner, A., & Brent, F. (2000). Combinatorics of Coxeter groups. Scholars Portal.

- Coxeter-dynkin diagram. Academic Dictionaries and Encyclopedias. (n.d.). Retrieved July 16, 2022, from https://en-academic.com/dic.nsf/enwiki/11585259
- Gaetz, C., & Gao, Y. (2019). A combinatorial sl₂-action and the Sperner property for the weak order. *Proceedings of the American Mathematical Society*, 148(1), 1–7. https://doi.org/10.1090/proc/14655
- Gaetz, C., & Gao, Y. (2020). On the Sperner property for the absolute order on complex reflection groups. *Algebraic Combinatorics*, 3(3), 791–800. https://doi.org/10.5802/alco.114

		Acknowledgements 00●

Thank you!