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Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,
and x is a binary operation under S

An introduction to Coxeter groups and the properties of their weak order



Introduction
08000000

Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,

and x is a binary operation under S
© 3 properties:

An introduction to Coxeter groups and the properties of their weak order



Introduction
08000000

Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,
and x is a binary operation under S
© 3 properties:
¢ Associativity: V a,b,c € S, ax (b*xc)=(axb)xc

An introduction to Coxeter groups and the properties of their weak order



Introduction
08000000

Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,
and x is a binary operation under S
© 3 properties:
¢ Associativity: V a,b,c € S, ax (b*xc)=(axb)xc
¢ ldentity Element: 3e€ S, Va€e S5, axe=exa=a

An introduction to Coxeter groups and the properties of their weak order 4 /38



Introduction
08000000

Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,
and x is a binary operation under S
© 3 properties:
¢ Associativity: V a,b,c € S, ax (b*xc)=(axb)xc
¢ ldentity Element: 3e€ S, Va€e S5, axe=exa=a

1 1

® Inverse Element: Vac€ S, a7, axal=alxa=e
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Introduction to Groups

® A group is a set S, and an operation x, such that * is well defined,
and x is a binary operation under S
© 3 properties:
¢ Associativity: V a,b,c € S, ax (b*xc)=(axb)xc
® Identity Element: 3e€ S, Vac 5, axe=exa=a
® Inverse Element: Vac€ S, a7, axal=alxa=e

Example: (Z,+)
Identity Element: 0
Inverse Element: Vac Z, a! = —a
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® A free group is a group G generated by a set S, such that G can be
built from words of the set S, where our operation * is concatenation
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Generators

® A free group is a group G generated by a set S, such that G can be
built from words of the set S, where our operation * is concatenation

* For example if S = {x,y}, then G = {w(x,y,x L,y 1}
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Coxeter Groups

® A Coxeter group can best be described by an image
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Coxeter Groups

e A Coxeter group is a group that is generated by reflections ...

® We can instead think of Coxeter groups by considering Coxeter
matrices

Definition

We consider a set S. A Coxeter matrix M with elements from
{1,2,...,00} satisfies the properties M; s+ = My 5, and
Mss =1 <= s=¢
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Coxeter Matrices Examples

¢ These extend to Coxeter Graphs where if M;; = 2, there exists no
edge between i and j, and anything greater than 3 indicates an edge
with a weight
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Coxeter Matrices Examples

¢ These extend to Coxeter Graphs where if M;; = 2, there exists no
edge between i and j, and anything greater than 3 indicates an edge

with a weight
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Understanding Coxeter Groups

® A Coxeter matrix determines a group G with S as a set of generators,

where (ss')Yss = e

* This means that we impose the relation s> = e

¢ Example:
xxysy xxSxySxyxy’ (1)
= XKy xx Ky Y Ry (2)
=X*kYkXkYxYy (3)
=xxysxx*y (4)
=X*y*X (5)
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Coxeter Example

® G is the Coxeter group and S is the set of Coxeter generators

¢ We can think our last last example of a graph of 4 generators,
S1,S2,S3 and Sy, which all have the property S? = e
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Generators

* We consider the transpositions 5| — (1 2) and 5, — (2 3)
® We begin with 123
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Generating Ay

Recall that 5| = (1 2) and Sy = (2 3)

123
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Generating Ay

Recall that 5, = (1 2) and S2 = (2 3)

AN

231 312

213 132
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Type B and D Coxeter Groups

* We also have type B Coxeter groups

® For example, Bs has the Coxeter matrix

(&

N =~ =
W
— W N
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Type B and D Coxeter Groups Continued

® Then there are type D Coxeter groups

1 3 2 2
® Dy has the Coxeter matrix 33
2 3 1 2
2 3 2 1
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Introduction to Posets

® Posets stand for Partially Ordered Sets
© Posets have a set P with a partial order relation <

® Posets are transitive, reflexive and antisymmetric

{x, v}

{x} {r}

{}
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Length Function

N

231 312

213 132

N

Here we have a poset, where we can
compare our elements using a
length function ¢(w), where we
consider the shortest number of
transpositions from 123 to obtain
our new word

Ex: £(231) =2

23 /38

An introduction to Coxeter groups and the properties of their weak order



Weak Order of Coxeter Groups

Definition

The right weak order of a Coxeter group (G, S) states for u,w € G, if
W = us1Sy . ..Sk, for some s; € S such that

l(usisy...sk) =L(u)+i, 0<i<k, thenu<w
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Example of Weak Order

Here we can see the weak order of the Coxeter group As
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Poset Antichains

® An antichain is a subset of nodes in our poset such that all of the
nodes are incomparable to each other
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Rank of a Poset

® A chain is a set of nodes such that all the nodes are comparable

¢ A ranked poset has maximal chains of equal length. A maximal chain
is a chain such that no superset is also a chain

{x,y}

N
\/
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® The Sperner property describes posets where the size of the largest
antichain is less than or equal to the largest rank

{x,y}

{
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Type A Coxeter Groups and the Sperner Property

Theorem (Gaetz and Gao)

The weak order of type A Coxeter groups are strongly Sperner
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Insert... Conjecture

A COMBINATORIAL sl,-ACTION AND THE SPERNER
PROPERTY FOR THE WEAK ORDER

CHRISTIAN GAETZ AND YIBO GAO

ABSTRACT. We construct a simple combinatorially-defined representa-
tion of slo which respects the order structure of the weak order on the
symmetric group. This is used to prove that the weak order has the
strong Sperner property, and is therefore a Peck poset, solving a prob-
lem raised by Bjorner (1984); a positive answer to this question had
been conjectured by Stanley (2017).
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Conjecture 3.1

Conjecture 3.1. The weak order on any finite Coxzeter group strongly
Sperner.

An easy argument proves the Conjecture for the dihedral groups, and
computer checks have also verified it for all Coxeter groups of rank at most
four.

While this is recognized as an open problem, this paper conjectures that
all finite Coxeter groups are strongly Sperner. I've been given the project
of disproving this conjecture ...
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Why Do We Care?

® There are a lot of more complicated finite Coxeter groups, many of
which are very difficult to study as they get significantly more
complicated

© Discovering more properties helps us learn more about the
complicated cases

*e0 -, 00 Es H+.F4 4
H_B_:C;m E, oo 050
G: H
HD< IEB OO
H,
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My Research This Summer

® Using deep cross-entropy methods
® This approach comes from a paper Adam Zsolt Wagner

Algorithm 1: The deep cross-entropy method

Initialize a neural network;
while the best construction found is not a counterezample do
for i < 1 to N do
w + empty string;
while not terminal do
Input w into the neural net to get a probability distribution F' on the next letter;
Sample next letter  according to F;
wwt T
end
end
Evaluate the score of each construction;
Sort the constructions according to their score;
Throw away all but the top y percentage of the constructions;
for all remaining constructions do

for all (observation, issued action) pairs in the construction do
Adjust the weights of the neural net slightly to minimize the cross-entropy loss

between issued action and the corresponding predicted action probability;
end
end
Keep the top z percentage of constructions for the next iteration, throw away the rest;
end
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Using SageMath, we have found that D5 and Eg are Sperner, but will
keep using similar techniques for E7, Eg and unions of antichains

WeylGroup([E:N, <]1).weak_poset().width()
WeylGroup([E, 1) .weak_poset() .width()

WeylGroup([E » 1) .weak_poset().width()

WeylGroup([m , o1).weak_poset().width()

Hello URA Seminarf]
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