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Understanding Reflections

e Reflections play a key role in understanding Coxeter groups.

* In R?, we can think of reflections as (x, y) + (x, —y), or
(x,y) — (y,x) (which is a transposition).

® In higher dimensions (R") , a reflection will send a € R” to its
negative, while the hyperplane H, orthogonal to « is fixed pointwise.
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e Coxeter groups are groups that are generated by reflections.
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® The symmetric group of permutations of order n, (S,). For example
S3 ={(123),(132), (213), (231), (312), (321) }, which can entirely be
generated by the transpositions (1 2) and (2 3).
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Introduction to Coxeter Groups

e Coxeter groups are groups that are generated by reflections.

e Examples of such groups are:
® The symmetric group of permutations of order n, (S,). For example
S3 ={(123),(132), (213), (231), (312), (321) }, which can entirely be
generated by the transpositions (1 2) and (2 3).
® The dihedral group of order 2n, written (Da,), has the form
Doy = (1,52 | s7 = s3 = (s152)" = 1), are also generated by reflections
s; and sy with the relation (s152)" = 1.

An introduction to Coxeter groups and the properties of their weak order 5/ 40



Introduction
[e]e]e] le]e]

Coxeter Groups

e We can instead think of Coxeter groups by considering Coxeter
matrices.

An introduction to Coxeter groups and the properties of their weak order



Introduction
[e]e]e] le]e]

Coxeter Groups

e We can instead think of Coxeter groups by considering Coxeter
matrices.

Definition

We consider a set S. A Coxeter matrix M with elements from
{1,2,..., 00} satisfies the properties M; s+ = My 5, and
Mss =1 <= s=¢
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Coxeter Matrices Examples

® These extend to Coxeter Graphs where if M;; = 2, there exists no
edge between i and j, and anything greater than 3 indicates an edge
with a weight
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Coxeter Matrices Examples

® These extend to Coxeter Graphs where if M;; = 2, there exists no
edge between i and j, and anything greater than 3 indicates an edge

with a weight
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Understanding Coxeter Groups

e A Coxeter matrix determines a group G with S as a set of generators,
where (ss')ss = e

® This means that we impose the relation s> = e

e G is the Coxeter group and S is the set of Coxeter generators

® We can think our last last example of a graph of 4 generators,
S1, 52, S3 and Sy, which all have the property S? = 1
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Generators

® We consider the transpositions S| = (1 2) and S; = (2 3)
® We begin with 123
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Generating Ay

Recall that S; = (1 2) and S» = (2 3)
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Generating Ay

Recall that S| = (1 2) and Sy = (2 3)

321

RN

231 312

213 132

N

123
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Type B and D Coxeter Groups

® \We also have type B Coxeter groups

® For example, B has the Coxeter matrix

SV Y

DN =~ =
W =
= W N
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Type B and D Coxeter Groups Continued

® Then there are type D Coxeter groups
1 3 2 2
13 1 3 3
® D, has the Coxeter matrix 9 3 1 9
2 3 21
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Introduction to Posets

® Posets stand for Partially Ordered Sets
® Posets have a set P with a partial order relation <

® Posets are transitive, reflexive and antisymmetric

{x,y}

{x} {r}

{
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Length Function

We define the length of an element in our Coxeter group as the smallest
number of reflections used to generate it.

321 Here we have a poset, where we can
/ \ compare our elements using a
length function ¢(w), where we
231 312 consider the shortest number of
transpositions from 123 to obtain

our new word
213 132 Ex: £(231) =2

N

20 / 40
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Strong/Weak Order of Coxeter Groups

The strong order (in S,), states that for w € S, we state that w < wt;; if
l(wtjj) = £(w) + 1 where t;; = (i j)

Definition
The right weak order (in S,,) of a Coxeter group (G, S) states that for
w € S, we state that w < ws; if {(ws;) = ¢(w)+ 1 where s; = (i i + 1)

v
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Strong Order of A,

321

231 312

132 213

123
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Examples of Strong/Weak ordefr

We observe the strong and weak order of the Coxeter group As

(a) Strong Order (b) Weak Order
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Poset Antichains

® An antichain is a subset of nodes in our poset such that all of the
nodes are incomparable to each other
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® An antichain is a subset of nodes in our poset such that all of the
nodes are incomparable to each other

{x,y}
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Rank of a Poset

® A chain is a set of nodes such that all the nodes are comparable

® A ranked poset has maximal chains of equal length. A maximal chain
is a chain such that no superset is also a chain

{x, v}
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@ Sperner Property
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® The Sperner property describes posets where the size of the largest
antichain is less than or equal to the rank of the poset

{x, v}

{
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Type A Coxeter Groups and the Sperner Property

Definition
A poset is k Sperner, if no union of k antichains is larger than the union of
its largest k ranks. A poset is if it is k-Sperner for all kK € N.

Theorem (Gaetz and Gao)

The weak order of type A Coxeter groups are strongly Sperner
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Insert... Conjecture

A COMBINATORIAL sl,-ACTION AND THE SPERNER
PROPERTY FOR THE WEAK ORDER

CHRISTIAN GAETZ AND YIBO GAO

ABSTRACT. We construct a simple combinatorially-defined representa-
tion of slz which respects the order structure of the weak order on the
symmetric group. This is used to prove that the weak order has the
strong Sperner property, and is therefore a Peck poset, solving a prob-
lem raised by Bjorner (1984); a positive answer to this question had
been conjectured by Stanley (2017).
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Conjecture 3.1

Conjecture 3.1. The weak order on any finite Coxzeter group strongly
Sperner.

An easy argument proves the Conjecture for the dihedral groups, and
computer checks have also verified it for all Coxeter groups of rank at most
four.

While this is recognized as an open problem, this paper conjectures that
all finite Coxeter groups are strongly Sperner.
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Focus of Research This Summer

® Using deep cross-entropy methods
® This approach comes from a paper Adam Zsolt Wagner

Algorithm 1: The deep cross-entropy method

Initialize a neural network;
while the best construction found is not a counterezample do
for i < 1 to N do
w 4 empty string;
while not terminal do
Input w into the neural net to get a probability distribution F' on the next letter;
Sample next letter z according to F;
wwtT
end
end
Evaluate the score of each construction;
Sort the constructions according to their score;
Throw away all but the top y percentage of the constructions;
for all remaining constructions do

for all (observation, issued action) pairs in the construction do
Adjust the weights of the neural net slightly to minimize the cross-entropy loss

between issued action and the corresponding predicted action probability;
end
end
Keep the top x percentage of constructions for the next iteration, throw away the rest;
end
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Scoring Antichains

® In order to use the machine learning algorithm on Coxeter groups, we
had to score subsets of elements created by the elements of our
Coxeter groups.

® This involved creating states generated by comparing the elements in
our "supposed" antichain, and maximizing the highest possible score
to prevent comparable elements.
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Using Sage

e Using SageMath, we have found that D5 and Eg are Sperner, but will
keep using similar techniques for E7, Eg and unions of antichains

weylGroup ([, 41).weak_poset().width()
weylGroup([EH, 41).weak_poset().width()

WeylGroup( [ﬂ, 1) .weak_poset().width()

WeylGroup( [m, 1) .weak_poset().width()

Hello Algebraic Combinatorics & Enumeration Seminarf]
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Bipartite Matching Algorithm

® The width of the poset returned from sage is equal to the number of
chains, which by Dilworth's theorem states is equivalent to the largest
antichain.

® Sage creates a bipartite graph, to create a matching to construct the
union of chains to obtain the poset width.

Dilworth's Theorem

In any finite partially ordered set, the largest antichain has the same size
as the smallest chain decomposition.
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Interest in Coxeter groups

® There are a lot of more complicated finite Coxeter groups, many of
which are very difficult to study as they get significantly more
complicated

e Discovering more properties helps us learn more about the
complicated cases
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Applications of Coxeter groups

e All Weyl groups of simple Lie algebras are Coxeter groups by
definition.
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Applications of Coxeter groups

e All Weyl groups of simple Lie algebras are Coxeter groups by
definition.

® Lije algebra’s have applications in quantum mechanics related to
particle spin, and in particle physics.

® Weyl groups play a role in understanding both structure theory and
representation theory.
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Advancements

® Determining if a poset has Dilworth's number k can be done in
O(k?n?) time.
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Advancements

® Determining if a poset has Dilworth's number k can be done in
O(k?n?) time.
* In the classical case, the bipartite matching algorithm is O(n?).

® The maximal bipartite matching algorithm can be run in
O(ny/m + nlogn) using a Quantum algorithm, in a graph with n
vertices and m edges.
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