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Physical Background

Quantum field theory (QFT) describes the fundamental constituents of matter and all funda-

mental forces except gravity. The probability of a scattering process can be computed with

the help of Feymnman integrals. These integrals are indexed by Feynman graphs.

We consider Feynman graphs that represent quantum corrections to a 2 → 2 scattering pro-
cess of φ4-theory. This theory is a simplified model theory consisting of only one type of
particle and where vertices in Feynman graphs can only be 4-valent. A 4-regular graph is a

completion, a graph with 4 1-valent vertices is a decompletion. The Feynman period of a primi-

tive graph is the dependence of its scattering amplitude on the energy scale.
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The Symanzik polynomial ψG is the sum over all spanning trees, and consists of the edge

variables ae1ae2 · · · aeL for the edges {e1, . . . , eL} not in the spanning tree. For a L-loop graph,
it is of degree L.

Unlike more general Feynman integrals, the period has the advantage that it is a single finite

number, not a function of momenta of external particles, and therefore easy to handle numer-

ically. Many numerical [1] and analytical [2, 3] results are known. Periods are also of interest

in number theory [4], they form a class of numbers that exceeds Q and does not exhaust R.

At 16 loops, there are around 1 billion non-isomorphic completions. It is impossible to numer-

ically compute all their periods. If we know an approximate value of the period beforehand,

we can select the most important ones.
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Implementation of Neural Network

Given a large dataset with approximately

2 million Feynman periods computed, and

193 features for each Feynman graph.

Used a multi-layer feedforward neural

network to predict the Feynman period.

Applied a sigmoid activation function

between each layer of the neural network.

Key packages: Python 3.10.4, PyTorch

2.0.0, torch-geometric 2.3.0.

Applied Adam optimizer from PyTorch

with the default settings.

Used mean squared error (MSE) loss

function to compute the difference

between our input x, and the Feynman

periods y to compute:

1
n

n∑
i=1

||f (xi,W) − yi||2 (2)

for optimized weightsW, and a model f.

Features of Feynman Graphs

Apart from the graph itself (via the incidence matrix), 193 features of each graph were used to

construct the datasets.

Dimension of cycle space: loop order L = |V | − 2.
Size of automorphism group (symmetry factor).

Number of non-isomorphic decompletions, how many

are planar, their symmetry factor.

Number of ways the graph can be cut by removing r
edges, for various r.

Number of ways the graph can be cut by removing r
edges such that one obtains exactly 2 connected

components.

Number of cycles of a fixed length l, for various l.

Number of ways the graph can be turned into c disjoint
cycles by splitting vertices (circuit partition polynomial).

Mean and moments of the distribution of distances

between any two vertices.

Mean and moments of the distribution of resistances

between vertices if the graph were an electrical

network where every edge has unit resistance.

Traces and Eigenvalues of various graph matrices.

A simplification of equation (1) where the Symanzik

polynomial is replaced with the single largest

monomial (Hepp bound).
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Period as function of triangles, L=11

Four Different Models

Basic Neural Network

4 linear layers of size (193, 75, 24, 12).

Did not use incidence matrix or other

information about the structure of graph.

Convolutional Neural Network

Includes all features of the basic model,

with the incidence matrices trained on a

convolutional neural network.

At each convolutional layer, we use

hidden layer H l+1 = σ(DADH lW l) [5]. In
this case D = (

∑
j Ai,j)−1/2, where A is

the incidence matrix. H l andW l

represent the hidden layer, and weights

used for the lth convolutional layer.

Stack Neural Network

4 linear layers of size (193, 75, 24, 12).

Uses flattened incidence matrix.

Useful to see what significance the

distribution of single edges of the

incidence matrix may have.

Graph Convolutional Network

4 linear layers of size (193, 75, 24, 12).

Data set includes edge-index matrices.

Similar to CNN, a linear layer was used to

account for both predictions, and a final

prediction was made using a linear layer.

193 Features Graph structure

Basic model CNN / GCN

Linear Layer

Period prediction

Basic ModelwithWeighted Data

The data sets of the different loop numbers are

very different in size. If a model is trained on all

data, it effectively uses almost only 13 loops.

To compensate the bias, the loss functions scales

each data set by 1 −NL · T−1, where NL
represents the total number of Feynman graphs

of loop order L used to train the model, and T
represents the total number of Feynman graphs

of all loop orders used. The loss function is

calculated as: (
1 − NL

T

)
1
T

T∑
i=1

(f (xi,W) − yi)2 (3)

By employing this weighted training approach, greater emphasis is placed on those data entries

that were underrepresented due to their smaller dataset size.

Results

Average Relative Prediction Error

Loop order 6 7 8 9 10 11 12 13 14 15 16 17 18

Basic 58.27 40.78 29.89 25.45 23.18 20.35 18.20 14.62 10.29 5.35 2.89 1.61 0.53

Stack 38.45 22.89 51.32 24.93 17.62 36.59 37.94 36.05 39.77 36.41 39.59 26.51 10.32

CNN 6.68 1.30 8.62 12.20 12.50 12.49 11.65 12.09 5.66 9.08 3.34 1.80 1.71

GCN 3.96 6.18 2.44 4.66 4.53 8.30 35.17 124.8 140.0 47.80 60.80 15.55 3.02

Weighted 66.28 50.46 36.62 31.01 28.55 20.86 17.06 13.65 9.71 5.64 3.37 1.66 0.11

Table 1. Relative Error of Prediction With Hepp Bound

Average Relative Prediction Error

Loop order 6 7 8 9 10 11 12 13 14 15 16 17 18

Basic 74.06 58.83 49.92 44.80 42.27 41.24 31.73 27.47 21.71 14.53 9.86 4.33 0.57

Stack 59.25 42.86 63.92 47.35 36.18 58.29 48.13 52.34 53.88 55.12 45.71 38.97 15.98

CNN 67.36 61.93 56.49 51.05 45.61 40.17 34.73 29.29 23.85 18.41 12.97 7.53 2.10

GCN 66.65 61.10 55.54 49.98 44.42 38.87 33.30 27.74 22.20 16.64 11.08 5.52 0.04

Weighted 72.12 57.61 45.64 43.09 47.54 47.22 41.19 34.98 27.57 19.17 12.59 6.93 0.49

Table 2. Relative Error of Prediction Without Hepp Bound

Compared several Machine Learning

models to predict Feynman Periods, to

determine which would have the smallest

loss.

Reached conclusion that the basic and

weighted model perform the best.

Further investigations ongoing to

determine best optimal weight of the

weighted model, and different training

methods for GCN.
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