Physical Background

Quantum field theory (QFT) describes the fundamental constituents of matter and all fundamental forces except gravity. The probability of a scattering process can be computed with
the help of Feymnman integrals. These integrals are indexed by Feynman graphs.

We consider Feynman graphs that represent quantum corrections to a $2 \rightarrow 2$ scattering process of ϕ^{4}-theory. This theory is a simplified model theory consisting of only one type of particle and where vertices in Feynman graphs can only be 4 -valent. A 4-regular graph is a completion, a graph with 41 -valent vertices is a decompletion. The Feynman period of a primifive graph is the dependence of its scattering amplitude on the energy scale.

$$
\begin{equation*}
\mathcal{P}(G)=\left(\prod_{e \in E_{G}} \int_{0}^{\infty} \mathrm{d} a_{e}\right) \delta\left(1-\sum_{e \in E_{G}} a_{e}\right) \frac{1}{\psi_{G}^{2}} \tag{1}
\end{equation*}
$$

The Symanzik polynomial ψ_{G} is the sum over all spanning trees, and consists of the edge The Symanzik polynomial ψ_{G} is the sum over all spanning trees, and consists of the edge
variables $a_{e_{1}} a_{e_{2}} \cdots a_{e_{L}}$ for the edges $\left\{e_{1}, \ldots, e_{L}\right\}$ not in the spanning tree. For a L-loop graph, variables $e_{e_{1}} e_{2}$.
it is of degree L
Unlike more general Feynman integrals, the period has the advantage that it is a single finite number, not a function of momenta of external particles, and therefore easy to handle numercally. Many numerical [1] and analytical [$[, 3]$ results are known. Periods are also of interest in number theory [4], they form a class of numbers that exceeds \mathbb{Q} and does not exhaust \mathbb{R}. At 16 loops, there are around 1 billion non-isomorphic completions. It is impossible to numerically compute all their periods. If we know an approximate value of the period beforehand, we can select the most important ones.

Implementation of Neural Network
Given a large dataset with approximately 2 million Feynman periods computed, and 193 features for each Feynman graph. Used a multi-layer feedforward neural network to predict the Feynman period. Applied a sigmoid activation function. between each layer of the neural network. Key packages: Python 3.10.4, PyTorch 2.0.0, torch-geometric 2.3.0 with the default settings
Used mean squared error (MSE) loss function to compute the difference between our input x, and the Feynman periods y to compute:

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(\mathbf{x}_{i}, \mathbf{W}\right)-y_{i}\right\|^{2}
$$

Features of Feynman Graphs

Apart from the graph itself (via the incidence matrix), 193 features of each graph were used to construct the datasets.

- Dimension of cycle space: loop order $L=|V|-2$
- Size of automorphism group (symmetry factor).
- Number of non-isomorphic decompletions, how many are planar, their symmetry factor.
Number of ways the graph can be cut by removing r edges, for various
Number of ways the graph can be cut by removing r edges such that one obtains exactly 2 connected components.
Number of cycles of a fixed length l, for various l.
- Number of ways the graph can be turned into c disjoint
cycles by splitting vertices (circuit partition polynomial).
- Mean and moments of the distribution of distances between any two vertices.
Mean and moments of the distribution of resistances between vertices if the graph were an electrical network where every edge has unit resistance.
- Traces and Eigenvalues of various graph matrices. A simplification of equation (1) where the Sym polynomial is replaced
monomial (Hepp bound).

Four Different Models

Basic Model with Weighted Data

$$
\begin{aligned}
& \text { The data sets of the different loop numbers are } \\
& \begin{array}{l}
\text { very different in size. If a model is trained on al } \\
\text { data, it effectively uses almost only } 13 \text { loops. }
\end{array} \\
& \text { To compensate the bias, the loss functions scales } \\
& \text { each data set by } 1-N_{L} \cdot T^{-1} \text {, where } N_{L} \\
& \text { represents the total number of Feynman graphs } \\
& \text { of loop order } L \text { used to train the model, and } T \\
& \begin{array}{l}
\text { represents the total number of Feynman graph } \\
\text { of all loop orders used. The loss function is }
\end{array} \\
& \text { calculated as: } \\
& \left(1-\frac{N_{L}}{T}\right) \frac{1}{T} \sum_{i=1}^{T}\left(f\left(\mathbf{x}_{i}, \mathbf{W}\right)-y_{i}\right)^{2}
\end{aligned}
$$

By employing this weighted training approach, greater emphasis is placed on those data entries that were underrepresented due to their smaller dataset size.

Results													
	Average Relative Predicition Error												
Loop order	6	7	8	9	10	11	12	13	14	15	16	17	18
Basic	58.27	40.78	29.89	25.45	23.18	20.35	18.20	14.62	10.29	5.35	2.89	1.61	0.53
Stack	38.45	22.89	51.32	24.93	17.62	36.59	37.94	36.05	39.77	36.41	3.59	26.51	10.32
CNN	6.68	1.30	8.62	12.20	12.50	12.49	11.65	12.09	5.66	9.08	3.34	1.80	1.71
GCN	3.96	6.18	2.44	4.66	4.53	8.30	35.17	124.8	140.0	47.80	60.80	15.55	3.02
Weighted	66.28	50.46	36.62	31.01	28.55	20.86	17.06	13.65	9.71	5.64	3.37	1.66	0.11
Table 1. Relative Error of Prediction With Hepp Bound													
	Average Relative Prediction Error												
Loop order	6	7	8	9	10	11	12	13	14	15	16	17	18
Basic	74.06	58.83	49.92	44.80	42.27	41.24	31.73	27.47	21.71	14.53	9.86	4.33	0.57
Stack	59.25	42.86	63.92	47.35	36.18	58.29	48.13	52.34	53.88	55.12	45.71	38.97	15.98
CNN	67.36	61.93	56.49	51.05	45.61	40.17	34.73	29.29	23.85	18.41	12.97	7.53	2.10
GCN	66.65	61.10	55.54	49.98	44.42	38.87	33.30	27.74	22.20	16.64	11.08	5.52	0.04
Weighted	72.12	57.61	45.64	43.09	47.54	47.22	41.19	34.98	27.57	19.17	12.59	6.93	0.49
Table 2. Relative Error of Prediction Without Hepp Bound													
	satuodets	\|ren			L.		Com mode deter loss. Reac weig Furth deter weigh meth	pared els to rmine hed co hted her inv rmine hted m ods for	sever predic which onclus model vestiga best model, or GC	ral Ma ict Fey would sion th l perfo ations optim I, and N.	achine ynman uld hav that the orm th ongo nal we differ	Learn Perio ve the he basic the best. oing to ight o ent tr	ning ods, to smallest sic and st. of the raining

References

1P.-H. Balduf, Statistics of Feynman amplitudes in ϕ^{4}-theory, (2023) http: //arxiv . org/abs/2305. 13506 (visited on
O6/ $24 / 2203$). preprint. 06/24/2023), preprint.
O. Schnetz, "Quantum periods: A census of ϕ^{4}-transcendentals", Commun.Num.Theor.Phys. 4. 1-48 (2010) http O. Schnetz, "Numbers and Functions on 10/29/2021). Ther" Physical Review D 97.085018 (2018), htt ${ }^{3}$ O. Schnetz, "Numbers and Functions in Quantum Field
$/ /$ arxiv org/abs $/ 1606$. 08598 (visited on 09/04/2019).
M. Kontsevich and D. Zagier "Periods" in Mathematics Unlimited-2001 and Beyond (Soringer 2001) $10.771-808$ http://preprints. ihes.fr/M01/M01-22.ps.gz.
T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", arXiv preprint T. N. Kipf and M. Welling,
arxiv:1609.02907 (2016).

